摩擦发射的原理
Principle of Tribo-Emission
摩擦过程中,摩擦副表面分子间的相互作用导致材料表面发生弹性形变、塑性形变,并引起材料表面分子、原子或电子的能级跃迁。当跃迁的分子、原子或电子从非稳激发态跃迁回基态时,就会发射出X射线、紫外线、可见光、红外线、电子、离子等物理射线[1]。摩擦发射物理射线的形式及强度与摩擦的起源、摩擦能量耗散途径紧密相关,受到人们的广泛关注和研究。
Zink 等[2]、 Fontenot [3,4]、Vettegren 等[5]、 Hollerman等[6]研究了冲击导致的发光现象,发现被冲击晶体的摩擦发射谱与其荧光普相似,与冲击过程中晶体中裂纹的扩展、新生表面起电导致的分子激发有关[2],此外还发现入射能量的改变可导致摩擦光谱的峰移[4]。通过摩擦光谱探测到石英晶体表面 Si-O-Si键断裂后 SiO·原子团从激发态向基态的跃迁,从而可将摩擦发射谱用于研究摩擦表面的单原子迁移[5]。
Hird 等[7]、Miura 等[8]研究了大气和真空中滑动摩擦的发光特性,发现金刚石针尖在金刚石等盘片上滑动时发出的光谱包含其光致发光特征谱线,且摩擦发光与电致发光以及摩擦表面键的断裂有关。Nakayama 等[9-11]观察到滑动摩擦过程中发射的电子、离子、紫外线、可见光、红外线等,并发现了摩擦发射引起的润滑分子离子化和裂解。
Hird 等设计了摩擦发射X射线的装置,采用“接触-分离”模式,利用X射线探测器观察到两表面在接触-分离过程中发射出的X射线[12-15]。摩擦发射X射线的强度可供X射线照相技术作为光源使用。
研究摩擦过程中的发射现象有助于探索摩擦的起因。此外,摩擦过程发射的物理射线还可用干损伤监测、害虫诱捕等方面。由于摩擦发射的物理射线种类较多,影响因素错综复杂而且相互耦合,对摩擦发射的系统研究存在诸多困难。因此,到目前为止,摩擦发射的机理并未十分清楚,现有的摩擦发射探测系统仍具有一定的局限性。实现对摩擦发射X射线、紫外线、可见光、红外线等物理射线的宽谱探测,实现轻载、光滑表面、无接触表面等无磨损摩擦状态下微弱物理射线发射信号的探测,是探索摩擦发射机制的关键。
参考文献
[1] Walton AJ. Triboluminescence. Advanced in Physics, 1977,26(6):887-948.
[2] Chandra B P, Zink J I. Mechanical characteristics and mechanism of the triboluminescence of fluorescent molecular crystals. Journal of Chemical Physics,1980,73(12): 5933-5941.
[3] Fontenot R S, Hollerman W A, Aggarwal M D, et al. A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement,2012, 45(3):431-436.
[4] Fontenot R S, Hollerman W A, Goedeke SM. Initial evidence of a triboluminescent wavelength shift for ZnS:Mn caused by ballistic impacts. Materials Letters,2011,65(7):1108-1110.
[5] Vettegren V I, Bashkarev A Y, Mamalimov R I, et al. Fractoluminescense of crystalline quartz upon an Impact. Physics of the Solid State, 2008, 50(1): 28-31.
[6] Hollerman W A, Bergeron N P. Goedeke S M, et al. Annealing effects of triboluminescence production on irradiated ZnS:Mn. Surface and Coatings Technology,2007,201(19-20):8382-8387.
[7] Hird JR, Chakravarty A, Walton A J. Triboluminescence from diamond. Journal of Physics D:Applied Physics,2007,40(5): 1464-1472.
[8] Miura T, Hosobuchi E. Arakawa I. Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO2, MgO, NaCl, and Al2O3(0001). Vacuum,2010,84: 573-577.
[9] Nakayama K. Triboemission of electrons, ions, and photons from diamondlike carbon films and generation and tribomicroplasma. Surface and Coatings Technology, 2004,188-189(1):599-604.
[10] Nakayama K. Triboplasma generation and triboluminescence: Influence of stationary sliding
partner. Tribology Letters, 2010,37(2):215-228.
[11] Nakayama K. Mechanism of triboplasma generation in oil. Tribology Letters,2011,41(2):345-351.
[12] Camara C G, Escobar J V, Hird J R.et al. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature,2008. 455(7216): 1089-1092.
[13] Hird J R, Camara C G, Putterman S J. A triboelectric X-ray source. Applied Physics Letters,2011,98(13):133501.
[14] Kneip S. A stroke of X-ray. Nature ,2011,473(7348):455-456.
[15] Collins A L, Camara C G, Naranjo B B, et al. Charge localization on a polymer surface measured by triboelectrically induced X-ray emission. Physical Review B, 2013,88(6):064202.
撰稿人:徐学锋1、马丽然2
1北京林业大学、2清华大学